Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38.761
Filtrar
2.
Trials ; 25(1): 272, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641837

RESUMO

BACKGROUND: Children with sensitization against foods have to be orally food-challenged before eating these foods for the first time. However, the waiting time for an oral food challenge (OFC) in Germany is about 3-6 months. In contrast, there are hints that an early introduction of allergenic foods might be protective regarding the development of food allergy. The aim of this clinical trial is therefore to investigate, whether an introduction and regular consumption of small amounts of food allergens is safe and will result in an increase of tolerance in children with sensitization against food allergens with unknown clinical relevance. METHODS: In this randomized, placebo-controlled, double-blind, single-center trial, 138 children (8 months to 4 years of age) sensitized to the target allergen(s) hen's egg, cow's milk, peanuts, and/or hazelnuts with unknown clinical relevance will be randomized in a 1:1 ratio to either an active or a placebo group, daily receiving a rusk-like biscuit powder with or without the target allergen(s) for 3-6 months until an OFC will be performed in routine diagnostics. The primary endpoint is an IgE-mediated food allergy to the primary target allergen, after the interventional period. DISCUSSION: Children with sensitization against food allergens with unknown clinical relevance often have to avoid the corresponding foods for several months until an OFC is performed. Therefore, the "window of opportunity" for an early preventive introduction of allergenic foods might be missed. This trial will assess whether an introduction of small allergen amounts will favor tolerance development in these children. TRIAL REGISTRATION: German Clinical Trials Register DRKS00032769. Registered on 02 October 2023.


Assuntos
Galinhas , Hipersensibilidade Alimentar , Criança , Lactente , Bovinos , Humanos , Feminino , Animais , Hipersensibilidade Alimentar/diagnóstico , Hipersensibilidade Alimentar/prevenção & controle , Leite/efeitos adversos , Alérgenos/efeitos adversos , Tolerância Imunológica
3.
Cancer Immunol Res ; 12(4): 393-399, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562083

RESUMO

CD4+CD25hiFOXP3+ regulatory T cells (Treg) play major roles in the maintenance of immune tolerance, prevention of inflammation, and tissue homeostasis and repair. In contrast with these beneficial roles, Tregs are abundant in virtually all tumors and have been mechanistically linked to disease progression, metastases development, and therapy resistance. Tregs are thus recognized as a major target for cancer immunotherapy. Compared with other sites in the body, tumors harbor hyperactivated Treg subsets whose molecular characteristics are only beginning to be elucidated. Here, we describe current knowledge of intratumoral Tregs and discuss their potential cellular and tissue origin. Furthermore, we describe currently recognized molecular regulators that drive differentiation and maintenance of Tregs in cancer, with a special focus on those signals regulating their chronic immune activation, with relevant implications for cancer progression and therapy.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Neoplasias/terapia , Tolerância Imunológica , Imunoterapia , Inflamação
4.
Front Immunol ; 15: 1339714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38571951

RESUMO

The intricate balance of immune reactions towards invading pathogens and immune tolerance towards self is pivotal in preventing autoimmune diseases, with the thymus playing a central role in establishing and maintaining this equilibrium. The induction of central immune tolerance in the thymus involves the elimination of self-reactive T cells, a mechanism essential for averting autoimmunity. Disruption of the thymic T cell selection mechanisms can lead to the development of autoimmune diseases. In the dynamic microenvironment of the thymus, T cell migration and interactions with thymic stromal cells are critical for the selection processes that ensure self-tolerance. Thymic epithelial cells are particularly significant in this context, presenting self-antigens and inducing the negative selection of autoreactive T cells. Further, the synergistic roles of thymic fibroblasts, B cells, and dendritic cells in antigen presentation, selection and the development of regulatory T cells are pivotal in maintaining immune responses tightly regulated. This review article collates these insights, offering a comprehensive examination of the multifaceted role of thymic tissue homeostasis in the establishment of immune tolerance and its implications in the prevention of autoimmune diseases. Additionally, the developmental pathways of the thymus are explored, highlighting how genetic aberrations can disrupt thymic architecture and function, leading to autoimmune conditions. The impact of infections on immune tolerance is another critical area, with pathogens potentially triggering autoimmunity by altering thymic homeostasis. Overall, this review underscores the integral role of thymic tissue homeostasis in the prevention of autoimmune diseases, discussing insights into potential therapeutic strategies and examining putative avenues for future research on developing thymic-based therapies in treating and preventing autoimmune conditions.


Assuntos
Doenças Autoimunes , Timo , Humanos , Tolerância Imunológica , Doenças Autoimunes/prevenção & controle , Tolerância a Antígenos Próprios , Homeostase
5.
Sci Immunol ; 9(93): eade6256, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457513

RESUMO

Programmed cell death-1 (PD-1) is a potent immune checkpoint receptor on T lymphocytes. Upon engagement by its ligands, PD-L1 or PD-L2, PD-1 inhibits T cell activation and can promote immune tolerance. Antagonism of PD-1 signaling has proven effective in cancer immunotherapy, and conversely, agonists of the receptor may have a role in treating autoimmune disease. Some immune receptors function as dimers, but PD-1 has been considered monomeric. Here, we show that PD-1 and its ligands form dimers as a consequence of transmembrane domain interactions and that propensity for dimerization correlates with the ability of PD-1 to inhibit immune responses, antitumor immunity, cytotoxic T cell function, and autoimmune tissue destruction. These observations contribute to our understanding of the PD-1 axis and how it can potentially be manipulated for improved treatment of cancer and autoimmune diseases.


Assuntos
Doenças Autoimunes , Neoplasias , Humanos , Receptor de Morte Celular Programada 1 , Tolerância Imunológica , Ativação Linfocitária , Domínios Proteicos
7.
JCI Insight ; 9(6)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38516885

RESUMO

CD4+Foxp3+ regulatory T cells (Tregs) play an essential role in suppressing transplant rejection, but their role within the graft and heterogeneity in tolerance are poorly understood. Here, we compared phenotypic and transcriptomic characteristics of Treg populations within lymphoid organs and grafts in an islet xenotransplant model of tolerance. We showed Tregs were essential for tolerance induction and maintenance. Tregs demonstrated heterogeneity within the graft and lymphoid organs of tolerant mice. A subpopulation of CD127hi Tregs with memory features were found in lymphoid organs, presented in high proportions within long-surviving islet grafts, and had a transcriptomic and phenotypic profile similar to tissue Tregs. Importantly, these memory-like CD127hi Tregs were better able to prevent rejection by effector T cells, after adoptive transfer into secondary Rag-/- hosts, than naive Tregs or unselected Tregs from tolerant mice. Administration of IL-7 to the CD127hi Treg subset was associated with a strong activation of phosphorylation of STAT5. We proposed that memory-like CD127hi Tregs developed within the draining lymph node and underwent further genetic reprogramming within the graft toward a phenotype that had shared characteristics with other tissue or tumor Tregs. These findings suggested that engineering Tregs with these characteristics either in vivo or for adoptive transfer could enhance transplant tolerance.


Assuntos
Linfócitos T Reguladores , Tolerância ao Transplante , Animais , Camundongos , Fatores de Transcrição Forkhead , Rejeição de Enxerto/prevenção & controle , Tolerância Imunológica , Linfócitos T CD4-Positivos , Subunidade alfa de Receptor de Interleucina-7
8.
Sci Transl Med ; 16(738): eadm8859, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38478632

RESUMO

Engineered regulatory T (Treg) cells have emerged as precision therapeutics aimed at inducing immune tolerance while reducing the risks associated with generalized immunosuppression. This Viewpoint highlights the opportunities and challenges for engineered Treg cell therapies in treating autoimmune and other inflammatory diseases.


Assuntos
Doenças Autoimunes , Linfócitos T Reguladores , Humanos , Tolerância Imunológica , Terapia de Imunossupressão
9.
Adv Exp Med Biol ; 1444: 67-82, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467973

RESUMO

Regulatory T (Treg) cells, which specifically express the master transcription factor FoxP3, are indispensable for the maintenance of immunological self-tolerance and homeostasis. Their functional or numerical anomalies can be causative of autoimmune and other inflammatory diseases. Recent advances in the research of the cellular and molecular basis of how Treg cells develop, exert suppression, and maintain their function have enabled devising various ways for controlling physiological and pathological immune responses by targeting Treg cells. It is now envisaged that Treg cells as a "living drug" are able to achieve antigen-specific immune suppression of various immune responses and reestablish immunological self-tolerance in the clinic.


Assuntos
Autoimunidade , Linfócitos T Reguladores , Tolerância a Antígenos Próprios , Tolerância Imunológica , Regulação da Expressão Gênica , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo
10.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485340

RESUMO

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Assuntos
Heme Oxigenase-1 , Microglia , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem da Esquiva , Citocinas/metabolismo , Interleucina-6/metabolismo , Comportamento Social , Tolerância Imunológica , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
11.
Cells ; 13(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38534388

RESUMO

The Sertoli cells (SeCs) of the seminiferous tubules secrete a multitude of immunoregulatory and trophic factors to provide immune protection and assist in the orderly development of germ cells. Grafts of naked or encapsulated SeCs have been proved to represent an interesting therapeutic option in a plethora of experimental models of diseases. However, whether SeCs have immunosuppressive or immunomodulatory effects, which is imperative for their clinical translatability, has not been demonstrated. We directly assessed the immunopotential of intraperitoneally grafted microencapsulated porcine SeCs (MC-SeCs) in murine models of fungal infection (Aspergillus fumigatus or Candida albicans) or cancer (Lewis lung carcinoma/LLC or B16 melanoma cells). We found that MC-SeCs (i) provide antifungal resistance with minimum inflammatory pathology through the activation of the tolerogenic aryl hydrocarbon receptor/indoleamine 2,3-dioxygenase pathway; (ii) do not affect tumor growth in vivo; and (iii) reduce the LLC cell metastatic cancer spread associated with restricted Vegfr2 expression in primary tumors. Our results point to the fine immunoregulation of SeCs in the relative absence of overt immunosuppression in both infection and cancer conditions, providing additional support for the potential therapeutic use of SeC grafts in human patients.


Assuntos
Carcinoma Pulmonar de Lewis , Células de Sertoli , Masculino , Humanos , Suínos , Animais , Camundongos , Células de Sertoli/metabolismo , Túbulos Seminíferos/metabolismo , Carcinoma Pulmonar de Lewis/metabolismo , Imunossupressores/uso terapêutico , Tolerância Imunológica
12.
JCI Insight ; 9(6)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38516892

RESUMO

Tregs have the potential to establish long-term immune tolerance in patients recently diagnosed with type 1 diabetes (T1D) by preserving ß cell function. Adoptive transfer of autologous thymic Tregs, although safe, exhibited limited efficacy in previous T1D clinical trials, likely reflecting a lack of tissue specificity, limited IL-2 signaling support, and in vivo plasticity of Tregs. Here, we report a cell engineering strategy using bulk CD4+ T cells to generate a Treg cell therapy (GNTI-122) that stably expresses FOXP3, targets the pancreas and draining lymph nodes, and incorporates a chemically inducible signaling complex (CISC). GNTI-122 cells maintained an expression profile consistent with Treg phenotype and function. Activation of CISC using rapamycin mediated concentration-dependent STAT5 phosphorylation and, in concert with T cell receptor engagement, promoted cell proliferation. In response to the cognate antigen, GNTI-122 exhibited direct and bystander suppression of polyclonal, islet-specific effector T cells from patients with T1D. In an adoptive transfer mouse model of T1D, a mouse engineered-Treg analog of GNTI-122 trafficked to the pancreas, decreased the severity of insulitis, and prevented progression to diabetes. Taken together, these findings demonstrate in vitro and in vivo activity and support further development of GNTI-122 as a potential treatment for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Diabetes Mellitus Tipo 1/tratamento farmacológico , Linfócitos T Reguladores , Autoantígenos , Tolerância Imunológica
13.
J Clin Invest ; 134(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426502

RESUMO

Immune tolerance to allogenic transplanted tissues remains elusive, and therapeutics promoting CD4+FOXP3+ Tregs are required to achieve this ultimate goal. In this issue of the JCI, Efe and colleagues engineered an Fc domain fused to a human mutein IL-2 (mIL-2-Fc) bearing mutations that confer preferential binding to the high-affinity IL-2 receptor expressed on Tregs. In vivo mIL-2-Fc therapy effectively heightened mouse, monkey, and human Treg numbers, promoted tolerance to minor antigen mismatched skin grafts in mice, and synergized with immunosuppressive drugs used in the clinic. These findings warrant clinical trials that assess the efficacy of mIL-2-Fc in transplantation.


Assuntos
Interleucina-2 , Tolerância ao Transplante , Camundongos , Humanos , Animais , Tolerância ao Transplante/genética , Interleucina-2/genética , Interleucina-2/farmacologia , Linfócitos T Reguladores , Imunossupressores , Tolerância Imunológica
14.
Sci Immunol ; 9(93): eadj4775, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489352

RESUMO

The gut microbiota promotes immune system development in early life, but the interactions between the gut metabolome and immune cells in the neonatal gut remain largely undefined. Here, we demonstrate that the neonatal gut is uniquely enriched with neurotransmitters, including serotonin, and that specific gut bacteria directly produce serotonin while down-regulating monoamine oxidase A to limit serotonin breakdown. We found that serotonin directly signals to T cells to increase intracellular indole-3-acetaldehdye and inhibit mTOR activation, thereby promoting the differentiation of regulatory T cells, both ex vivo and in vivo in the neonatal intestine. Oral gavage of serotonin into neonatal mice resulted in long-term T cell-mediated antigen-specific immune tolerance toward both dietary antigens and commensal bacteria. Together, our study has uncovered an important role for specific gut bacteria to increase serotonin availability in the neonatal gut and identified a function of gut serotonin in shaping T cell response to dietary antigens and commensal bacteria to promote immune tolerance in early life.


Assuntos
Microbioma Gastrointestinal , Serotonina , Animais , Camundongos , Bactérias , Tolerância Imunológica , Antígenos
15.
CNS Neurosci Ther ; 30(3): e14643, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38470096

RESUMO

AIMS: Glioblastoma is the most frequent and aggressive primary brain tumor, characterized by rapid disease course and poor treatment responsiveness. The abundance of immunosuppressive macrophages in glioblastoma challenges the efficacy of novel immunotherapy. METHODS: Bulk RNA-seq and single-cell RNA-seq of glioma patients from public databases were comprehensively analyzed to illustrate macrophage infiltration patterns and molecular characteristics of podoplanin (PDPN). Multiplexed fluorescence immunohistochemistry staining of PDPN, GFAP, CD68, and CD163 were performed in glioma tissue microarray. The impact of PDPN on macrophage immunosuppressive polarization was investigated using a co-culture system. Bone marrow-derived macrophages (BMDMs) and OT-II T cells isolated from BALB/c and OT-II mice respectively were co-cultured to determine T-cell adherence. Pathway alterations were probed through RNA sequencing and western blot analyses. RESULTS: Our findings demonstrated that PDPN is notably correlated with the expression of CD68 and CD163 in glioma tissues. Additionally, macrophages phagocytosing PDPN-containing EVs (EVsPDPN ) from GBM cells presented increased CD163 expression and augmented secretion of immunoregulatory cytokine (IL-6, IL-10, TNF-α, and TGF-ß1). PDPN within EVs was also associated with enhanced phagocytic activity and reduced MHC II expression in macrophages, compromising CD4+ T-cell activation. CONCLUSIONS: This investigation underscores that EVsPDPN derived from glioblastoma cells contributes to M2 macrophage-mediated immunosuppression and is a potential prognostic marker and therapeutic target in glioblastoma.


Assuntos
Exossomos , Glioblastoma , Glioma , Animais , Humanos , Camundongos , Exossomos/metabolismo , Glioblastoma/patologia , Glioma/metabolismo , Tolerância Imunológica , Fatores de Transcrição , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
16.
Int Immunopharmacol ; 130: 111764, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38452413

RESUMO

OBJECTIVE: Tolerogenic dendritic cells (tolDCs) have emerged as a potential treatment for rheumatoid arthritis (RA). However, the detailed mechanism requires further investigation. In this study, we aimed to explore the effects of tolDCs on T-cell differentiation and NLRP3-mediated pyroptosis in a collagen-induced arthritis (CIA) rat model. METHODS: TolDCs were induced using NF-κB ODN decoy. The efficacy of tolDCs intervention in alleviating arthritis symptoms was evaluated in CIA rats. Flow cytometry was employed to analyze CD4+ T-cell subpopulations, while scanning electron microscopy was utilized to observe pyroptosis morphology. Immunohistochemistry was used to assess the expression of pyroptosis-associated proteins. RESULTS: TolDCs intervention significantly reduced joint inflammation and damage in CIA rats. Moreover, it successfully restored the balance of Th1/Th2 cells as well as the balance of Treg/Th17 cells. Furthermore, tolDCs intervention effectively suppressed NLRP3-mediated pyroptosis in the synovium, decreasing the release of IL-1ß and IL-18. CONCLUSION: Our findings underscore the efficacy of tolDCs in attenuating CIA progression through modulation of CD4+ T-cell subpopulations and inhibition of NLRP3-mediated pyroptosis.


Assuntos
Apoptose , Artrite Experimental , Células Dendríticas , Tolerância Imunológica , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Ratos , Artrite Experimental/terapia , Diferenciação Celular , Células Dendríticas/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Sprague-Dawley , Feminino
17.
Int J Biol Macromol ; 264(Pt 2): 130621, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447834

RESUMO

The immune system acts as a vital defense barrier against pathogenic invasions, and its stable operation is crucial for maintaining body health. Nevertheless, various natural or artificial factors can compromise the body's immune function, leading to immunosuppression, which may interfere with the efficacy of vaccination and increase the susceptibility of the body to disease-causing pathogens. In an effort to ensure successful vaccinations and improve overall physical well-being, the search for appropriate immune regulators to enhance immunity is of paramount importance. Lentinan (LNT) has a significant role in immune regulation and vaccine adjuvants. In the present study, we constructed an immunosuppressive model using dexamethasone (DEX) and demonstrated that LNT could significantly improved antibody levels in immunosuppressive mice and stimulated T-lymphocyte proliferation and differentiation in intestinal Peyer's patches. LNT also increased the production of secretory immunoglobulin A (sIgA) in the duodenal fluid, the number of goblet cells, and the proportion of mucin area. Moreover, LNT modulated the intestinal microbiota and increased the production of short-chain fatty acids. Additionally, LNT promoted the proliferation, differentiation, and pro-inflammatory cytokines production of DEX-treated splenic T lymphocytes in vitro. Thus, the present study highlights the potential of LNT in reversing immunosuppression and avoiding the failure of vaccination.


Assuntos
Terapia de Imunossupressão , Lentinano , Animais , Camundongos , Lentinano/farmacologia , Tolerância Imunológica , Intestinos , Dexametasona/farmacologia
18.
Int Immunopharmacol ; 131: 111806, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38457985

RESUMO

Cow's milk protein allergy (CMPA) is primarily due to the inability of the intestinal mucosa to establish typical immunological tolerance to proteins found in cow's milk, and the specific molecular mechanism is still unclear. In order to investigate molecular alterations in intestinal tissues during CMPA occurrence, this study analyzed the jejunal tissue of ß-lactoglobulin (BLG)-sensitized mice through transcriptomics and quantitative tandem mass tag (TMT)-labeled proteomics. A total of 475 differentially expressed genes (256 up-regulated, 219 down-regulated) and 94 differentially expressed proteins (65 up-regulated, 29 down-regulated) were identified. Comparing the KEGG pathways of the two groups, it was found that both were markedly enriched in the signaling pathways of complement and coagulation cascade. Among these, kallikrein B1 (KLKB1) in this pathway is speculated to be pivotal in CMPA. It may potentially enhance the release of bradykinin by activating the kallikrein-kinin system, leading to pro-inflammatory effects and exacerbating intestinal mucosal damage. This study suggests that the pathways of complement and coagulation cascades could be significant in the context of intestinal immunity in CMPA, and KLKB1 may be its potential therapeutic target.


Assuntos
Hipersensibilidade a Leite , Bovinos , Feminino , Animais , Camundongos , Hipersensibilidade a Leite/genética , Proteômica , Leite , Perfilação da Expressão Gênica , Tolerância Imunológica
20.
Front Immunol ; 15: 1312919, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322264

RESUMO

Rheumatoid arthritis (RA) is a chronic, systemic autoimmune condition marked by inflammation of the joints, degradation of the articular cartilage, and bone resorption. Recent studies found the absolute and relative decreases in circulating regulatory T cells (Tregs) in RA patients. Tregs are a unique type of cells exhibiting immunosuppressive functions, known for expressing the Foxp3 gene. They are instrumental in maintaining immunological tolerance and preventing autoimmunity. Increasing the absolute number and/or enhancing the function of Tregs are effective strategies for treating RA. This article reviews the studies on the mechanisms and targeted therapies related to Tregs in RA, with a view to provide better ideas for the treatment of RA.


Assuntos
Artrite Reumatoide , Linfócitos T Reguladores , Humanos , Inflamação/metabolismo , Autoimunidade , Tolerância Imunológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...